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Growth mixture models (GMMs; B. O. Muthén & Muthén, 2000; B. O. Muthén

& Shedden, 1999) are a combination of latent curve models (LCMs) and finite

mixture models to examine the existence of latent classes that follow distinct

developmental patterns. GMMs are often fit with linear, latent basis, multiphase,

or polynomial change models because of their common use, flexibility in modeling

many types of change patterns, the availability of statistical programs to fit such

models, and the ease of programming. In this article, we present additional ways of

modeling nonlinear change patterns with GMMs. Specifically, we show how LCMs

that follow specific nonlinear functions can be extended to examine the presence

of multiple latent classes using the Mplus and OpenMx computer programs. These

models are fit to longitudinal reading data from the Early Childhood Longitudinal

Study–Kindergarten Cohort to illustrate their use.

Among the first tasks in developmental studies are describing how individuals

change (e.g., grow and/or decline) over time and how those changes differ from
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888 GRIMM, RAM, ESTABROOK

person to person (Baltes & Nesselroade, 1979; Wohlwill, 1973). In behavioral

research, latent curve models (LCMs) and similar techniques are often fit to

examine within-person change and between-person differences in change (see

McArdle & Nesselroade, 2003; Willett & Sayer, 1994, for historical reviews).

Many developmental processes exhibit nonlinear change patterns (Grimm, Ram,

& Hamagami, in press) and researchers must turn to LCMs that allow for nonlin-

earity in the change pattern. Nonlinearities in the within-person change processes

can be modeled using a variety growth models (e.g., polynomial, exponential,

sigmoid, multiphase, etc.) that take advantage of the LCM framework’s ability

to accommodate nonlinear mathematical functions of time. A specific class of

LCMs, referred to as Nonlinear Structured Latent Curve Models (NSLCMs;

Browne, 1993; Browne & du Toit, 1991), allow the within-person change process

to follow inherently nonlinear mathematical functions and allow for between-

person differences in key change components (see also Burchinal & Appelbaum,

1991; Grimm & Ram, 2009). Typological differences in development and change

can be modeled using Growth Mixture Models (GMMs; B. O. Muthén & Muthén,

2000; B. O. Muthén & Shedden, 1999). GMMs, a combination of LCMs and

the finite mixture model, allow for probabilistic classification of individuals

based on their longitudinal trajectories through a latent categorical variable.

Combining these two extensions of LCMs, researchers have a range of available

models for describing complex within-person change processes and between-

person differences in various aspects of change. The combination of NSLCMs

and GMMs approximate the nonlinear mixed-effects mixture model recently

proposed (Harring, 2005; Kelley, 2005, 2008).

The purpose of this article is to describe how NSLCMs and GMMs can be

combined to study unobserved classes that follow nonlinear change functions

using commonly available latent variable modeling software. After briefly re-

viewing basic elements of NSLCMs and GMMs, we describe how these models

can be fit to longitudinal reading data from the Early Childhood Longitudinal

Study using Mplus (L. K. Muthén & Muthén, 1998–2007) and OpenMx (Boker

et al., in press). The procedures are illustrated by example using an ongoing

investigation of heterogeneity in the development of children’s reading ability

from kindergarten through eighth grade.

MOTIVATING RESEARCH QUESTIONS:

READING DEVELOPMENT

Our example is derived from observed data as well as theoretical and empirical

work on the development of reading during childhood. However, please note

that the procedures illustrated can be applied to a variety of questions regarding

behavioral development and change.
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NONLINEAR GROWTH MIXTURE MODELS 889

Qualitative Differences in Reading Development

Previous research has documented the existence of multiple trajectories when

tracking the development of children’s reading abilities through early childhood.

For example, Pianta and colleagues (2008) found evidence of multiple classes in

their examination of four assessments of reading achievement collected during

elementary school as part of the National Institute of Child Health and Human

Development (NICHD) Study of Early Child Care. Making use of GMMs they

identified two types of children, a group of “fast readers” whose developmental

trajectories were characterized by early rapid growth followed by decelerated

growth, and a group of “typical readers” whose reading skills grew steadily

over time. In a similar vein, Kaplan (2002) identified three types of reading

trajectories that were characterized by differently shaped quadratic curves. The

first was a “fast developing” group with a mean trajectory similar in shape

to Pianta et al.’s “fast readers.” The second was a “normal developing group”

similar to the “typical readers” and the third was a “slow developing” group

characterized by slow initial growth followed by accelerated growth. Finally,

B. O. Muthén, Khoo, Francis, and Boscardin (2003) identified four classes

of reading development from kindergarten through first grade. The first class

showed no growth, two classes showed relatively stable growth over time but

differed in their initial levels of performance, and the fourth class started with

a high initial level performance and exhibited the greatest growth over the

observation period. In sum, when examined for evidence of multiple latent

classes, several studies have supported the need for multiple patterns of reading

development across early childhood.

Nonlinear Trajectories of Reading Development

Theories of reading development and learning, and many empirical data, are

best characterized by nonlinear change patterns (e.g., Grimm & Ram, 2009;

Kaplan, 2002; Pianta et al., 2008). Furthermore, theoretical notions regarding

changes in reading skills that extend beyond first grade do not posit simple

linear growth. Instead, there is a period of slow growth during kindergarten when

most students are not exposed to academic endeavors. Then, as primary grades

begin and students are exposed to a variety of new topics, the rate of growth

increases. In later primary school, students refine their abilities and proficiency

and become quicker rather than being exposed to new material and therefore,

growth slows. In line with these notions, research on the development of reading-

related activities, such as letter and word recognition, during the elementary

school years has shown nonlinear change patterns best characterized by sigmoid

(elongated s-shaped) curves capable of capturing the expected slow-fast-slow

patterns of growth (Grimm & Ram, 2009).
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890 GRIMM, RAM, ESTABROOK

Qualitative Differences in Nonlinear Trajectories of

Development

Having established the elongated s-shaped nonlinearity in reading skill devel-

opment across childhood, a natural next question is, Are there multiple classes

or subpopulations of individuals who develop in qualitatively different ways?

The objective is to evaluate whether and how many distinct types of nonlinear

developmental trajectories are exhibited by children as they develop their reading

skills from kindergarten through eighth grade.

EXAMPLE DATA: ECLS-K READING ACHIEVEMENT

The Early Childhood Longitudinal Study–Kindergarten (ECLS-K) cohort is a

longitudinal study of more than 21,000 children who entered kindergarten in

1998 and were followed through eighth grade. Reading achievement was as-

sessed on seven occasions: fall and spring of kindergarten and first grade and

the spring of third, fifth, and eighth grades. Reading assessments in the ECLS-

K were adaptive and scaled with an item response model. Observed scores

represent a continuous scale and carry the same meaning throughout the study.

Figure 1 is a longitudinal plot of reading achievement scores for a 1% random

sample of participants. The longitudinal trajectories are obviously nonlinear with

respect to grade (time). Previous analyses (Grimm & Ram, in press) of these

data have found the Gompertz curve to be an adequate representation of the

within-change process and between-person differences therein. However, the

longitudinal trajectories may be better represented by a GMM with latent classes

differing in their average rate of approach to the asymptote, timing of change,

and total amount of change (asymptotic level).

BACKGROUND ON ANALYTIC MODELS

In this section we briefly review the mathematical underpinnings of NSLCMs

and GMMs as relevant for our illustrative application. Given our concentration on

programming and implementation using Mplus and OpenMx, we purposefully

remain brief and refer readers to additional sources where detailed accounts

of each model, the combined model, and other strategies for application are

discussed (see Browne, 1993; Browne & du Toit, 1991; Grimm, McArdle, &

Hamagami, 2007; Grimm et al., in press; Harring, 2005; Harring, Cudeck, & du

Toit, 2006; Kelley, 2005, 2008; Ram & Grimm, 2009).

Nonlinear Structural Latent Curve Models

As mentioned, longitudinal reading data have previously been subjected to
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NONLINEAR GROWTH MIXTURE MODELS 891

FIGURE 1 Longitudinal plot of reading ability item response theory (IRT) scores for a

1% random sample from the Early Childhood Longitudinal Study–Kindergarten cohort.

a collection of nonlinear growth curves (Grimm & Ram, in press). It was

determined that a Gompertz model with variation in the rate of approach to

the asymptote, timing of accelerated changes, and total amount of change to

the upper asymptote adequately represented individual change patterns. The

Gompertz growth curve can be written as

ynt D i C an � exp.� exp.�rn.t � dn///; (1)

where i is the universal lower asymptote, an is the individual total amount of

change from the lower to upper asymptotes, rn represents the individual rate

of approach to the asymptote, and dn is the timing of accelerated changes for

individual n and is referred to as the timing parameter. The rate of change based

on the Gompertz model varies with time; however, the changes are most rapid

when t D dn and at this time the instantaneous rate of change is
.an�rn/

e
per

unit of t . With respect to our illustrative data, an represents the total amount of

expected change in reading ability and, because the lower asymptote does not

vary over participants, the upper potential for reading ability for each individual,

rn controls how quickly learning takes place for each individual once it begins,
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892 GRIMM, RAM, ESTABROOK

and dn represents the time when each individual’s learning rate reaches its

maximum.

The model of Equation (1) is a Nonlinear Random Coefficient Model (or fully

nonlinear mixed-model) because there are latent random coefficients (an, dn, &

rn) that enter the model nonlinearly. This can be shown by taking the partial

derivative of Equation (1) with respect to each latent random coefficient. When

doing this, the partial derivatives are shown to depend on one or more latent

random coefficients. Thus, this model cannot be directly estimated as a structural

equation model but can be approximated through linearization following the

work of Browne and du Toit (1991). In brief, the model of Equation (1) can

be reexpressed with i , an, dn, and rn as latent variables with factor loadings

equivalent to the partial derivatives of the target function with respect to each

latent variable. The factor loadings of latent variables are complex nonlinear

functions; however, they only vary with time making the model estimable using

general structural equation modeling software.

Following the steps laid out by Browne & du Toit (1991) the target function

of the Gompertz curve, written using the means of latent variables i , a, d , and

r , is

�t D �i C �a � exp.� exp.��r .t � �d ///: (2)

Taking the partial derivative of Equation (2) with respect to each mean, the

Gompertz curve at the individual level can be reexpressed as

ynt D xi �
@�t

@�i

C xan �
@�t

@�a

C xrn �
@�t

@�r

C xdn �
@�t

@�d

C ent ; (3)

where ynt are repeated measures, xi is the universal lower asymptote,
@�t

@�i
is the

partial derivative of the target function with respect to �i , xan is the individual

amount of change from lower to upper asymptote,
@�t

@�a
is the partial derivative

of the target function with respect to �a , xrn is individual rate of approach to

the asymptote,
@�t

@�r
is the partial derivative of the target function with respect to

�r , xdn is an individual timing coefficient, and
@�t

@�d
is the partial derivative of

the target function with respect to �d . Now, the partial derivatives of Equation

(3) with respect to the latent variables (latent random coefficients; xan, xrn, &

xdn) only depend on parameters (fixed effects) and not on any latent variable.

The model is now linear (or additive) with respect to latent variables and can

be estimated as a structural equation model. The model can now be viewed as

a restricted common factor model (see Meredith & Tisak, 1990) with the factor

loadings set equal to the partial derivatives. This type of model is often referred

to as a Nonlinear Structured Latent Curve Model because the latent variables

(latent random coefficients) enter the model linearly, but the parameters (fixed
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NONLINEAR GROWTH MIXTURE MODELS 893

effects) enter the model nonlinearly. Specifically, the general LCM is written as

yi D ƒ˜i C ©i ; (4)

where yi is a p�1 vector of repeated measures for individual i , ƒ is a p�q ma-

trix of factor loadings, ˜i is a q�1 vector of latent factor scores (i.e., intercept or

lower asymptote, rate of change, etc.), and ©i is a p �1 vector of residual scores.

In the Gompertz curve of Equation (3) ƒ D

0

B

B

@

@�t

@�i

@�t

@�a

@�t

@�r

@�t

@�d

:::
:::

:::
:::

@�t

@�i

@�t

@�a

@�t

@�r

@�t

@�d

1

C

C

A

, where

the columns define the factors, xi , xan, xrn, and xdn, respectively. Individual

latent factor scores are written as deviations from the sample mean as

˜i D ’ C —i ; (5)

where ’ is a q � 1 vector of latent variable means and —i is a q � 1 vector

of individual mean deviations. Combining Equations (4) and (5) gives the full

latent growth model,

yi D ƒ’ C ƒ—i C ©i : (6)

The population mean vector (�) and expected covariance matrix (†) of the

model are

� D ƒ’

† D ƒ‰ƒ0
C ‚;

(7)

where ‰ is a q � q latent variable covariance matrix and ‚ is a p � p diagonal

residual covariance matrix. It is important to note that the latent variable means

for xrn and xdn are fixed at 0, but the means of rn and dn are estimated

parameters in the equations for the partial derivatives in ƒ and thus estimated

with the model. See Browne and du Toit (1991) for complete details.

Growth Mixture Models

The objective of growth mixture modeling is to further examine heterogeneity

in change that may be manifested as multiple unobserved groups following

distinct developmental patterns (McLachlan & Peel, 2000; B. O. Muthén &

Muthén, 2000; B. O. Muthén & Shedden, 1999). Growth mixture modeling

extends the growth model by incorporating a categorical latent variable that

captures an additional aspect of between-person differences. In GMMs, popu-

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
i
a
m
i
]
 
A
t
:
 
1
3
:
3
3
 
1
7
 
J
a
n
u
a
r
y
 
2
0
1
1



894 GRIMM, RAM, ESTABROOK

lation heterogeneity is described in two ways: between-class heterogeneity and

within-class heterogeneity. Extending the expectations for the LCM in Equation

(7) to accommodate k D 1 to K latent classes, the expectations of the GMM

can be written as

� D

K
X

kD1

 k.ƒk’k/

† D

K
X

kD1

 k.ƒk‰kƒ0

k C ‚k/;

(8)

where  k is the proportion of participants in class k (average probability of class

membership in class k). Class proportions range between 0 and 1 .0 �  k � 1/

with the constraint that their sum equals 1 .
PK

kD1  k D 1/. The matrices of

Equation (8) contain the same parameters as in Equation (7); however, each

matrix is potentially class specific (subscripted by k), which allows for the

additional aspect of heterogeneity in development. However, in practice, certain

matrices are often specified to be class noninvariant, such as the latent variable

covariance, residual covariance, and factor loading matrices. This practice places

the focus of class differences on the means of the latent variables. In this project,

we fit three series of GMMs differing in the class-invariant matrices. In a vein

similar to Ram and Grimm (2009), the first set of models allowed ’, ƒ, and

the matrix housing the additional estimated parameters to be class noninvariant,

the second set also allowed ‰ to be class noninvariant, and the third set also

allowed ‚ to be class noninvariant.

PROGRAMMING NSLCMs AND GMMs

In this section, descriptions of how NSLCMs and the extension to GMMs can

be applied to the example data using Mplus and OpenMx are presented. Mplus

(L. K. Muthén & Muthén, 1998–2007) is a general latent variable modeling

program that can be used to conduct a variety of statistical analyses including

structural equation modeling (SEM) and mixture modeling. OpenMx (Boker

et al., in press) is a free and open source latent variable modeling program

for use within R (R Development Core Team, 2009) that can be used to es-

timate SEM and mixture models. These programs were chosen because they

are two of the only programs able to fit SEMs in combination with mixture

models that allow for nonlinear constraints. Complete programming scripts for

all models fit in each program and the electronic appendices referred to in the

subsequent programming descriptions are available at http://psychology.ucdavis.
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NONLINEAR GROWTH MIXTURE MODELS 895

edu/labs/Grimm/personal/downloads.html. Important elements of each script are

described so that users may adapt them for their own applications. Within each

section, basic familiarity with the Mplus or OpenMx software and programming

environment is assumed.

Mplus

NSLCM. Although growth curves can be specified in multiple ways using

Mplus, we use the standard SEM approach to facilitate linking and parallelism

across programs. For ease of reading, Mplus scripts are presented in Courier

New font to distinguish program-specific commands from text. In the scripts we

use CAPITAL letters for Mplus commands and lowercase letters for objects

specific to the data set and model. Throughout this description we refer to code

for fitting this model that is available in Electronic Appendix A.

Three key elements of the model (Means, Covariances, & Factor Loading

Pattern) are specified using the MODEL and MODEL CONSTRAINT statements, with

the rest of the script following the usual setup needed for reading data into the

program and requesting particular types of estimation and output.

In the first part of the MODEL statement, four latent variables (i, a, d, & r)

are specified representing the four latent variables of the Gompertz curve of

Equation (3) and their factor loadings. As outlined earlier, the factor loadings

are the partial derivatives of the target function taken with respect to each mean.

Factor loadings for i are fixed at 1, using @ to denote a fixed parameter because

the partial derivative of the target function (Equation (2)) with respect to �i

is 1. Factor loadings for a, d, and r are specified with labels contained within

parentheses, which will be used later in the MODEL CONSTRAINT command to

force the factor loadings to equal the appropriate partial derivative.

Second, means and intercepts are specified by placing names of latent and

observed variables within square brackets. The intercepts of the observed scores

are fixed at 0 as per usual practice in LCMs whereas the means of latent variables

i and a are given labels for use with the MODEL CONSTRAINT command. The

mean of i is given a starting value of -4 using * to denote a starting value

and labeled (mu_i). Similarly, the mean of a is given a starting value and label

(mu_a). In accordance with the specification given earlier the means of r and d

are fixed at zero.

Third, variances and covariances of the latent and manifest variables are speci-

fied. In Mplus, variances are specified by listing variable names and covariances

are specified using the WITH command. In our example residual variances of

observed variables are specified without an invariance constraint in order to

accommodate potential floor and ceiling effects in the longitudinal reading data.

Next, variances and covariances of latent variables are specified, along with

starting values.
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896 GRIMM, RAM, ESTABROOK

Finally, the MODEL CONSTRAINT command is used to finish specifying the

pattern of change by setting the factor loadings equal to the partial derivatives

of the target function. First, two additional parameters are created and starting

values provided using the NEW command. These parameters were named mu_r

and mu_d to remain consistent with the naming of the means of latent variables.

Next, a series of equations are specified for each of the factor loadings of the

latent variables making use of the labels defined previously. The labels of the

factor loadings are on the left-hand side of the constraints (i.e., equations) and

the associated partial derivative of the target function is given on the right-hand

side of the equation. Constraints for each set of factor loadings only differ with

respect to the timing of the measurement occasions. Specific to our example,

the time metric used in these models was grade in school at assessment with 0

representing fall of kindergarten and a one unit change in t indicating 1 year

change in grade (assessments took place either in the fall or spring of the school

year). Grade in school at assessment was chosen as the time metric because

reading-related skills have been shown to be more influenced by schooling

(instructional time) as opposed to age (Morrison, Smith, & Dow-Ehrensberger,

1995). However, assessment age could be used as the time metric in a similar

manner.1 Partial derivatives are specified using the labels of parameters defined

in the NEW command (mu_r & mu_d) and provided for the means of the latent

variables (in this case only mu_a is used as mu_i falls out when taking the partial

derivatives). Together these four portions of script specify the elements needed

for fitting the NSLCM.

Extension of NSLCMs to GMMs. The complete Mplus script described

here, a 2-class Gompertz GMM with ’, ƒ, and the matrix housing the additional

estimated parameters allowed to vary over classes, is available in Electronic

Appendix B. Here, we highlight the additions to the NSLCM script to include

latent classes.

First, for every GMM, the number of classes must be specified a priori.

Often, as done here, several models are fit varying the number of classes and

then compared. The name of the latent class variable and how many categories it

contains are specified in the VARIABLE: section as CLASSES = c(2), where c is

the name of the latent class variable and 2 is the number of latent classes.

Additionally, the type of analysis is changed to MIXTURE in the ANALYSIS

command (ANALYSIS: TYPE = MIXTURE).

1Age at assessment can vary widely over children in the ECLS-K. If age was the desired time

metric, data could be collated into variables reflective of a specific number of discrete ages. For

example, an age 5 variable may include anyone who was assessed between the ages of 4.75 and

5.25. Alternatively, the exact age at assessment can be used in both Mplus and OpenMx and placed

into the model constraints for the factor loading pattern.
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NONLINEAR GROWTH MIXTURE MODELS 897

Second, statements must be added to the MODEL: section in order to specify

the particular elements that do and do not differ among the latent classes—

similar to multiple group modeling where group-specific model statements are

necessary to specify which parameters are invariant and which are allowed to

vary across groups. In the GMM, an %OVERALL% model is specified, which is

the Gompertz curve specified previously with a few minor changes in the labels.

Specifically, labels are only provided for estimated parameters that are invariant

over classes in the %OVERALL% statement. Therefore, the labels for the factor

loadings and means of latent variables have been removed because they are

allowed to differ across classes. In contrast, labels are included for all variance

and covariance parameters as they are forced to be invariant across classes. The

%OVERALL% statement is followed by class-specific model statements, %C#1%

for Class 1 and %C#2% for Class 2, where only the particular elements of the

Gompertz curve allowed to vary between latent classes are specified. In these

sections, factor loadings for the latent variables and latent variable means are

redefined with labels reflecting the class number—labels have a 1 or a 2 at

the end.

Finally, changes are made in the MODEL CONSTRAINT: command because these

constraints are now class specific. As done previously, additional parameters are

specified using the NEW command—mu_d1 and mu_r1 for Class 1 and mu_d2 and

mu_r2 for Class 2. Similarly, factor loading constraints are specified separately

for each class. In particular, the factor loadings for first class are set equal to

the partial derivatives of Equation (2) using mu_d1, mu_r1, and mu_a1 and the

factor loadings for the second class are set equal to the partial derivatives of

Equation (2) using mu_d2, mu_r2, and mu_a2. The mean of the lower asymptote

is contained in the class-specific model statements; however, the label is the

same across classes forcing the mean of the lower asymptote to be invariant

over classes. With these changes, an Mplus script for an NSLCM is extended

to include latent classes.

OpenMx

NSLCM. As per the presentation of programming scripts, OpenMx com-

mands are written in Courier New font. Throughout this description we refer

to code for fitting this model that is available in Electronic Appendix C. To

facilitate reading of the code, we have kept a separation of the OpenMx and R

namespaces. Matrices, algebras, and models in OpenMx are “named entities”

and are stored as R “objects.” Although it is possible to store an OpenMx matrix

named “a” in an R object called “a,” we avoid using the same names for OpenMx

entities and R objects to avoid confusion of the two namespaces.

The first section of the script loads the OpenMx library into R, reads the

ECLS-K data, provides variable names, and assigns them to the data set. Next,
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898 GRIMM, RAM, ESTABROOK

major components of the model are specified. First, several matrices are specified

to describe the factor-analytic part of the growth curve. Matrices are created

using the mxMatrix() function and customized using the arguments of that

function. The first R object, factorMeans, is a matrix containing the means of

the four latent variables (i, a, d, & r). The means of the first two latent variables

are freely estimated (free = ‘TRUE’) and the second two are fixed (free

= ‘FALSE’). Starting values and labels are given using values and labels,

respectively. If a starting value is given and the parameter is not freely estimated,

such as the means of latent variables d and r, then the parameter is fixed at the

starting value. The last aspect of factorMeans is the name of the OpenMx

matrix, which is mu. The next R object, factorCov, is the matrix of latent

variable covariances, where starting values and labels are applied to the variances

and covariances of latent variables i, a, d, and r. The factor variance of i as

well as its covariances with the remaining latent variables are set to 0 by stating

free = ‘FALSE’ and specifying a starting value of 0. The remaining parameters

of the latent variable covariance matrix are freely estimated (free = ‘TRUE’)

and the OpenMx matrix name is phi. Next, the R object, manCov, is the matrix

of residual variances and covariances among manifest variables. Variances of

manifest variables are freely estimated and labels are applied by combining e

with the measurement occasion number. Thus, e1 is the label for the residual

variance of the first measurement occasion (fall of kindergarten). The name of

this OpenMx matrix is resid.

The only model matrix yet to be defined is the factor loading matrix. Before

defining the factor loading matrix, a series of matrices are specified to define

the model constraints for the factor loadings of the Gompertz curve of Equation

(3). The first of these is the R object unit, which is a column matrix of

1s. The OpenMx matrix name is one and will define the factor loadings for

the lower asymptote latent variable, i. Next, the R object time is specified,

which is a column matrix with values corresponding to the spacing between

measurement occasions based on grade of assessment in 1-year increments. The

OpenMx matrix name is t. Matrices for the parameters contained within the

factor loadings of Equation (3) are then specified in aParameter, dParameter,

and rParameter, which are R objects. Each is a column matrix with entries

with the same label and, thus, represents a single parameter. The entries for

the matrix aParameter are given the same label as the mean of the latent

variable a. The matrix dParameter and rParameter are place holders for the

d and r parameters of the Gompertz curve and function the same way as the new

command in Mplus. These R objects are given OpenMx matrix names alpha,

rho, and delta.

The factor loading matrix is specified one column at a time and the columns

are then combined into a single matrix. The four columns of the factor loading

matrix have R object names l1, l2, l3, and l4 with OpenMx matrix names
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NONLINEAR GROWTH MIXTURE MODELS 899

lambda1, lambda2, lambda3, and lambda4. The first column, l1, is set equal

to the R object Unit, the matrix previously defined containing a column of 1s.

The second through fourth columns are defined using the mxAlgebra() function

to set each column to the partial derivatives of the target function using matrices

previously defined. It is important to note that the OpenMx matrix names are

used in these model constraints as opposed to the R object names. After defining

each column of the factor loading matrix, the columns are combined to define

the factor loading matrix. The factor loading matrix, R object name loadings,

is defined using mxAlgebra and the cbind command available through R to

combine columns lambda1-lambda4 into a single matrix with OpenMx matrix

name lambda. All matrices needed to define the Gompertz growth curve are

now complete.

The final part of the script defines the model’s expectations. The mean and

covariance expectations of Equation (7) are specified in R objects meanAlg

and covAlg and given OpenMx names mean and cov, respectively. The full

model, R object named model, is defined using mxModel() by specifying all

of R objects previously defined followed by mxFIMLObjective() to call the

Full Information Maximum Likelihood Objective function with expectations

defined in the OpenMx names cov and mean. The model is then run us-

ing mxRun() calling R object model, and results are put into an R object

named results. The summary of results displays fit statistics and parameter

estimates.

Extension of NSLCMs to GMMs. The complete OpenMx script for a

2-class Gompertz GMM with ’, ƒ, and the matrix housing the additional

estimated parameters allowed to vary of classes is located in Electronic Appendix

D. In OpenMx, the 2-class GMM is specified as a 2-group growth model

with unknown group membership. A third model, called the parent or super

model, contains both of the group-specific models and an objective function

that combines the two models. Matrices with parameters allowed to vary over

classes are specified to be class specific, such that a matrix or algebra in the

single-class model is replaced by separate matrices or algebras for each class

suffixed with either a 1 or 2 depending on the class. For example, the script

contains two R objects (factorMeans1 & factorMeans2) for the means of

latent variables as the mean of the upper asymptote is allowed to vary over

classes. Similarly, R objects that contain the r and d parameters are class specific:

rParameter1, rParameter2, dParameter1, and dParameter2. Additionally,

the R object containing the a parameter used in the model constraints for the

factor loadings are class specific: aParameter1 and aParameter2. Finally,

columns that make up the factor loading matrix are class specific and utilize

OpenMx matrices from the respective class. These columns are combined to

make up the factor loading matrix and contained in R objects loadings1 and
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900 GRIMM, RAM, ESTABROOK

loadings2 (OpenMx objects lambda1 and lambda2). In this specification,

model matrices can contain both parameters that are class specific and class

invariant. These matrices are specified for each class, and common labels are

used for class-invariant parameters.

The next part of the script contains the model’s expectations where the mean

and covariance expectations from Equation (8) are specified. As in Equation

(8), expectations are written for each class: meanAlg1 and covAlg1 for Class 1

and meanAlg2 and covAlg2 for Class 2. Model expectations are given OpenMx

names mean1, cov1, mean2, and cov2. Next, two R objects, representing model

statements for each class, are specified using mxModel(). The model statements

include all of the R objects defined followed by mxFIMLObjective to call

the Full Information Maximum Likelihood Objective function with expectations

defined in OpenMx names cov1 and mean1 for Class 1 and cov2 and mean2

for Class 2.

For a multiple group or mixture model, a parent model is specified, which

combines the models from each group or latent class. Several additional R objects

are required in the parent model to fit the mixture model. First, R object classP

is specified as a 2�1 column matrix containing two proportions labeled pclass1

and pclass2, representing the estimated proportion of individuals contained

within each latent class. This matrix is given OpenMx name classProbs.

Second, a series of matrices and algebras are specified to constrain the sum

of class probabilities to equal 1. First, R object classS is specified using

mxAlgebra as the sum of OpenMx matrix classProbs. This matrix is given

OpenMx name classSum. Next, R object constant is specified as a 1 � 1

identity matrix and given OpenMx matrix name con. Next, R object classC,

the constraint on the class probabilities, is specified using mxConstraint()

where classSum is set equal to con, and this constraint is given OpenMx name

classCon.

Finally, algObj, the fit function for the mixture model, is specified as �2

times the sum of the log of two objective functions, one for each latent class,

each multiplied by the proportion of individuals assigned to each latent class,

and given the OpenMx name mixtureObj. The fit function, mixtureObj, is

placed in R object obj using mxAlgebraObjective(). The final part of the

script is the mxModel statement for the mixture model. The mxModel command

includes all of the R objects defined for the parent model and is placed in R

object mixedModel. The model is run using mxRun and output is requested

using summary.

Analysis Plan

As mentioned earlier, a series of NSLCMs were previously fit to the longitudinal

reading data and a Gompertz model with no variation in the lower asymptote
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NONLINEAR GROWTH MIXTURE MODELS 901

was determined to be the best-fitting model of those examined (Grimm & Ram,

in press). The series of NLSCMs were fit to determine the functional form that

best represented individual changes in reading achievement and between-child

differences therein and obtain baseline fit statistics for comparison purposes with

the GMMs. Fit statistics and parameter estimates for the Gompertz growth curve

are contained in the first column of Tables 1 and 2, respectively.

The three series of Gompertz mixture models were fit varying the number

of classes. The number of classes was increased until the Bayesian Information

Criteria (BIC) did not improve or convergence/estimation issues were encoun-

tered. Models were compared using information criteria (Akaike Information

Criteria [AIC], Bayesian Information Criteria [BIC], and Sample-size Adjusted

Bayesian Information Criteria [ABIC]), entropy, a measure of confidence in class

assignments, and the bootstrap Likelihood Ratio Test (LRT), which compares

the fit of the estimated GMM to the fit of a GMM with one less class. P

values for the bootstrap LRT are estimated and values less than .05 indicate the

estimated GMM fits better than the model with one less class. Additionally, the

theoretical underpinnings of the latent classes as well as estimated parameters

of the GMM were taken into account because these are necessary aspects of

model comparison and selection (see Nylund, Asparouhov, & Muthén, 2007;

Ram & Grimm, 2009, for additional details regarding model choice in growth

mixture modeling).

TABLE 1

Fit Statistics for Gompertz Growth Model and Gompertz Growth Mixture Models

Fit Statistics

M1:

Growth

Model

M2A:

2-Class

GMM

M3A:

3-Class

GMMa;b;c

M2B:

2-Class

GMM

M3B:

3-Class

GMMa;b;c

M2C:

2-Class

GMMa;c

M3C:

3-Class

GMMa;c

�
2 8,185 — — — — — —

Parameters 17 21 25 27 37 34 51

RMSEA .147 — — — — — —

CFI .896 — — — — — —

TLI .879 — — — — — —

�2LL 737,782 725,384 723,997 723,381 724,848 719,680 715,412

AIC 737,816 725,814 724,047 723,435 724,922 719,748 715,514

BIC 737,951 725,981 724,246 723,645 725,216 720,019 715,919

ABIC 737,897 725,914 724,167 723,564 725,098 719,910 715,757

Bootstrap LRT — < .001 < .001 < .001 < .001 < .001 < .001

p value

Entropy — .912 .687 .904 .608 .749 .671

Note. — indicates fit statistic not available; �
2

D maximum likelihood chi-square value; Parameters D number of

estimated parameters; RMSEA D Root Mean Square Error of Approximation; CFI D Comparative Fit Index; TLI D

Tucker-Lewis Index; �2LL D �2 log-likelihood; AIC D Akaike Information Criteria; BIC D Bayesian Information

Criteria; ABIC D Sample-size Adjusted BIC; GMM D Growth Mixture Model; Bootstrap LRT D Bootstrap Likelihood

Ratio Test.
aLatent variable covariance matrix was not positive definite. bBest log-likelihood was not replicated (from Mplus with

multiple sets of starting values). c Bootstrap LRT p value may not be trustworthy.
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902 GRIMM, RAM, ESTABROOK

TABLE 2

Parameter Estimates and Fit Statistics for Gompertz Growth Model and

Gompertz Growth Mixture Models

M1:

Gompertz

NSLCM

M2B: 2-Class

Gompertz

GMM

Sample size 20,871 19,594 1,277

Means

i 21.080* 20.336* 20.336*

a 144.857* 144.468* 155.472*

ra .564* .548* .916*

da 1.522* 1.614* 0.409*

Variances

a 546.764* 542.193* 201.202*

r .007* .002* .158*

d .238* .113* .141*

Latent variable covariances

a & r .899* 1.064* �2.658*

a & d �5.421* �4.097* .414

r & d �.014* �.011* �.035*

Residual variances

Reading Fall K 20.812* 15.174*

Reading Spring K 25.136* 18.423*

Reading Fall 1st 94.496* 92.181*

Reading Spring 1st 146.729* 148.118*

Reading Spring 3rd 130.397* 150.784*

Reading Spring 5th 85.498* 79.602*

Reading Spring 8th 251.851* 271.518*

Note. NSLCM D Nonlinear Structured Latent Curve Model; GMM D Growth

Mixture Model.
aIndicates value not contained with ’ matrix but estimated through the factor

loadings.

*Indicates a significant parameter at p < :01.

RESULTS

Fit statistics for the three series of Gompertz GMMs are contained in Table 1.

Models M2A and M3A are the 2- and 3-class models from the first series

(’, ƒ, and the matrix housing the additional estimated parameters were class

noninvariant), models M2B and M3B are the 2- and 3-class models from the

second series (additionally allowed ‰ to be class noninvariant), and models

M2C and M3C are the 2- and 3-class models from the third series (additionally

allowed ‚ to be class noninvariant).
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NONLINEAR GROWTH MIXTURE MODELS 903

Overall, the information criteria (AIC, BIC, & ABIC) favored some form

of GMM over the growth model; however, due to the large sample size in-

formation criteria are likely to favor more complex models. Further studying

iteration history, convergence, estimated parameters, entropy, and the bootstrap

LRT indicated that two of the models, M2A and M2B, were justifiable with

no convergence or estimation issues, smooth iteration histories, high entropy,

small p values for the bootstrap LRT, and estimated parameters describing

class trajectories mapping onto previous work. These models were both 2-class

models describing similar trajectories but differed with respect to whether the

latent variable covariance matrix was constrained to be invariant over classes.

Model M2B, with no invariance constraint, fit slightly better with respect to

the information criteria and the estimated latent variable covariance parameters

were sizably different in the two classes. Therefore, Model M2B was chosen

as the best representation of the longitudinal reading trajectories of the models

considered.

Parameter estimates of the Gompertz growth model and Model M2B are con-

tained in Table 2. Latent classes from this 2-class model distinguished between

children who followed a normative trajectory (normative) and children who

followed an accelerated trajectory (early readers). The normative class contained

the majority of children (94%) and had an average amount of change to the upper

asymptote of 144.468, an average rate of approach equal to .548, and an average

timing of the accelerated changes of 1.614. Thus, children in this class of readers

showed, on average, their fastest rate of learning toward the spring of first grade

and were changing at an instantaneous rate of 29.12 points per grade. There was

large variability in the total amount of reading change .¢2
a D 542:193/, a small

but significant amount of variability in the rate of approach to the asymptote

.¢2
r D :002/, and significant variability in the timing of the accelerated changes

.¢2
d D :113/. Furthermore, children in this class who changed more tended to

approach the asymptote more quickly .¢a;r D 1:064/, children who changed

more tended to change earlier .¢a;d D �4:097/, and children who approached

their asymptote more quickly tended to change earlier .¢r;d D �:011/.

Children in the early reader class tended to have a quicker rate of approach

to the asymptote, greater amounts of change, and tended to change earlier. The

average amount of change to the upper asymptote for this class was 155.472;

the average rate of approach to the asymptote was .916 with an average timing

of accelerated changes of .409. Children in this class showed, on average, their

fastest rate of learning toward the spring of kindergarten and were changing at an

instantaneous rate of 52.39 points per grade. There was a relatively small amount

of variability in the expected total amount of reading change .¢2
a D 201:202/,

comparatively large amount of variability in the rate of approach to the asymptote

.¢2
r D :158/, and significant variability in the timing of the accelerated changes

.¢2
d

D :141/. Children in this class who changed more tended to approach the
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904 GRIMM, RAM, ESTABROOK

FIGURE 2 Mean predicted trajectories for each latent class based on the 2-class Gompertz

growth mixture model with mean and latent variable differences between classes.

asymptote more slowly .¢a;r D �2:658/ and children who approached their

asymptote more quickly tended to change earlier .¢r;d D �:035/. In this class,

the total amount of change was unrelated to the timing of changes .¢a;d D :414/.

A plot of the predicted mean trajectories for the two classes is contained in

Figure 2. The mean curve for Class 1 and Class 2 shows the nonlinear change

pattern of the Gompertz curve; however, Class 2 shows the rapid increases

characteristic of the Gompertz curve earlier, changes occur more rapidly, and

there is more change overall than the first class.

DISCUSSION

In this article, recent advances in longitudinal mixture modeling were discussed—

the combination of nonlinear structured growth curve models with the finite

mixture model. These models enable researchers to further study the ways in

which individuals change and how their trajectories differ. The combination of
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NONLINEAR GROWTH MIXTURE MODELS 905

nonlinear mixed-effects models and the finite mixture models has been previ-

ously described, but these models have not been fit with commonly available

software. The approach taken here is based on a linearization of the nonlinear

mixed-effects model, which serves as an approximation, and the mixture model

is then built upon this approximation. This method is not optimal but has the

same goal of describing unobserved heterogeneity in nonlinear trajectories.

Between-Person Differences in Change

Developmentalists are interested in describing how individuals change over

time and how individuals differ in change. A first important component of

interindividual differences is the variability in growth parameters. Latent growth

curves allow for a specific type of variation in growth parameters, namely,

variation that is normally distributed. The GMM allows for additional aspects of

between-person variability in change—in essence relaxing the constraint that the

between-person variability is normally distributed. However, the GMM is not

without its controversies. Researchers often take the GMM (or other latent class

models) as evidence the sample was drawn from multiple populations. However,

the finite mixture model is simply attempting to account for nonnormality

in the observed data that may be caused by multiple populations but may

be caused by factors unrelated to multiple populations (see Bauer & Curran,

2003, & commentaries). Thus, determining when latent classes are meaningful

can be difficult. Researchers should consider all of the statistical information

provided along with the theoretical notions guiding the developmental process

and previous research.

A second important component of individual differences is whether indi-

viduals have fundamentally different change patterns, not just differences in the

magnitude of the same change pattern. This component of individual differences

can be studied with multiple group growth curves, if the grouping variable is

known, and GMMs, if the grouping variable is unknown. The illustrative example

focused on latent class differences in the magnitude of parameters from the

Gompertz model, but every child was expected to follow the change pattern of

the Gompertz curve. Although implemented this way, the within-person change

pattern can vary over classes. Thus, one class may show Gompertz growth and

the second may show logistic growth. Even though these patterns of change are

similar, they differ in their developmental asymmetry.

Reading Development

The results regarding within-person change and between-person differences in

change suggest the longitudinal trajectories in the ECLS-K are best described
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906 GRIMM, RAM, ESTABROOK

by a mixture of two distributions with differences in the amount of change,

rate of change, and timing of change. The first class described the normative

development pattern with accelerated changes occurring in the spring of first

grade. The second class described a group of early readers who tended to show

more overall growth, a faster rate of growth, and earlier growth when compared

with the class of readers following the normative pattern of change.

These classes map well onto work conducted by Pianta et al. (2008) with data

from the NICHD’s Study of Early Childcare and Youth Development where a

small class of early readers was separated from a class of children following

the normative developmental pattern. However, the work by Kaplan (2002) and

B. O. Muthén et al. (2003) also identified a class of slow readers that was

not identified here. These differences were likely due to the shorter period of

observation and choice of within-class growth curve. The model fit here allowed

for within-class variability in the amount of change, rate of change, and timing

of accelerated change whereas B. O. Muthén et al. (2003) fit linear and Kaplan

(2002) fit quadratic change models. However, Kaplan noted that the slow reading

class was more difficult to distinguish from the typical reading group than the

early reading class.

Thus, the class of early readers has been replicated across multiple data sets

and likely represents an important class of readers with a distinct trajectory

from the typical developing class. The slow reading class, on the other hand,

has not been replicated in this study indicating children who show slow reading

development may not have a growth trajectory distinct from the typical change

pattern. More research is needed to determine the conditions under which a

class of slow readers can be identified, what early childhood characteristics or

skills are most strongly related to class membership, and what early childhood

characteristics or skills are most strongly related to the variation shown in the

typically developing class because this class represents the majority of children

(�94%) and has a lot of variation in the amount of reading growth, rate of

growth, and timing of growth.

Mplus and OpenMx

Mplus and OpenMx are two latent variable modeling programs with the ability

of fitting such models as these programs allow for nonlinear constraints and

mixture distributions. Mplus has several benefits for fitting these models as its

mixture capabilities have been rigorously studied (e.g., B. O. Muthén, 2003;

Nylund et al., 2007), multiple sets of starting values are generated to avoid local

optima, and several additional indices of model fit are reported (e.g., entropy

& bootstrap Likelihood Ratio Test). Mplus also summarizes individual class

probabilities, can output individual class probabilities, and the latent classes can

be predicted and used as predictors of outcome variables.
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NONLINEAR GROWTH MIXTURE MODELS 907

Despite, its youth, OpenMx also has several benefits for model fitting. OpenMx

is open source, and thus, free both to use and to append and tailor to individual

needs. The package is documented with a traditional manual, discussion forums,

wikis, and example scripts. OpenMx works as a package within R, a powerful

statistics software environment, and thus benefits from all of the resources

of R, including a flexible programming language, graphics, and the ability to

function across computing platforms (Windows, Mac, Linux, etc). Additionally,

OpenMx allows for parallelization, enabling the program to run multiple models

simultaneously across multiple processors and multiple computers. This feature

is beneficial for mixture modeling as models with different sets of starting values

can be fit quickly. Finally, identical parameter estimates were obtained from

OpenMx and Mplus for the chosen model.

CONCLUDING REMARKS

In conclusion, nonlinear structured GMMs provide several possibilities for de-

scribing within-person change and between-person differences in such change.

This combination of models allows for the possibility of several interesting

combinations of latent classes: latent classes may simply differ in the means

of the latent variables (similar to what was shown for changes in reading

ability), or latent classes may have fundamentally different patterns of change.

By explicitly allowing for multiple distinct change patterns, nonlinear structured

GMMs allow researchers to study the various ways people and groups may differ

in their development, which should bring us closer to understanding individual

differences in time-related change.
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